Thiol-yne reaction

The Thiol-yne reaction (also alkyne hydrothiolation) is an organic reaction between a thiol and an alkyne. The reaction product is an alkenyl sulfide.[1][2] The reaction was first reported in 1949 with thioacetic acid as reagent [3][4] and rediscovered in 2009 [5] It is used in click chemistry and in polymerization, especially with dendrimers.

Thiol-yne reaction

This addition reaction is typically facilitated by a radical initiator or UV irradiation and proceeds through a sulfanyl radical species.With monoaddition a mixture of E/Z alkenes form. The mode of addition is anti-Markovnikov. The radical intermediate can engage in secondary reactions such as cyclisation.[6][7] With diaddition the 1,2-disulfide or the 1,1- dithioacetal forms. Reported catalysts for radical additions are triethylborane,[8] indium(III) bromide [9] and AIBN.[10] The reaction is also reported to be catalysed by cationic rhodium and iridium complexes,[11] by thorium and uranium complexes,[12] by rhodium complexes,[13][14][15] by caesium carbonate [16] and by gold.[17]

Ichinose et al. thiol-yne reaction 1987 [8]

Diphenyl disulphide reacts with alkynes to a 1,2-bis(phenylthio)ethylene.[18] Reported alkynes are ynamides [19]

Polymer chemistry

In polymer chemistry, systems have been described based on addition polymerisation with 1,4-benzenedithiol and 1,4-diethynylbenzene,[20][21] in the synthesis of dendrimers,[22][23][23][24][25] in star polymers,[26][27][28] in graft polymerisation,[29] block copolymers [30] and in polymer networks.[5] Another reported application is the synthesis of macrocycles via dithiol coupling.[31]

References

  1. ^ March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, ISBN 0-471-85472-7 
  2. ^ Hoogenboom, Richard (2010). "Thiol-Yne Chemistry: A Powerful Tool for Creating Highly Functional Materials". Angewandte Chemie International Edition 49 (20): 3415–7. doi:10.1002/anie.201000401. PMID 20394091. 
  3. ^ Bader, H.; Cross, L. C.; Heilbron, Ian; Jones, E. R. H. (1949). "132. Researches on acetylenic compounds. Part XVIII. The addition of thiolacetic acid to acetylenic hydrocarbons. The conversion of monosubstituted acetylenes into aldehydes and 1 : 2-dithiols". Journal of the Chemical Society (Resumed): 619. doi:10.1039/JR9490000619. 
  4. ^ Bader, Henry (1956). "23. The addition of thiolacetic acid to ethynylcarbinols and the conversion of the adducts into aldols and ??-unsaturated aldehydes". Journal of the Chemical Society (Resumed): 116. doi:10.1039/JR9560000116. 
  5. ^ a b Fairbanks, Benjamin D.; Scott, Timothy F.; Kloxin, Christopher J.; Anseth, Kristi S.; Bowman, Christopher N. (2009). "Thiol−Yne Photopolymerizations: Novel Mechanism, Kinetics, and Step-Growth Formation of Highly Cross-Linked Networks". Macromolecules 42 (1): 211–217. doi:10.1021/ma801903w. PMC 2651690. PMID 19461871. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2651690. 
  6. ^ Montevecchi, P; Navacchia, M (1998). "Sulfanyl radical mediated cyclization of aminyl radicals". Tetrahedron Letters 39 (49): 9077. doi:10.1016/S0040-4039(98)01998-4. 
  7. ^ Taniguchi, Tsuyoshi; Fujii, Tatsuya; Idota, Atsushi; Ishibashi, Hiroyuki (2009). "Reductive Addition of the Benzenethiyl Radical to Alkynes by Amine-Mediated Single Electron Transfer Reaction to Diphenyl Disulfide". Organic Letters 11 (15): 3298–301. doi:10.1021/ol901084k. PMID 19719181. 
  8. ^ a b Ichinose, Yoshifumi; Wakamatsu, Kuni; Nozaki, Kyoko; Birbaum, Jean-Luc; Oshima, Koichiro; Utimoto, Kiitiro (1987). "Et3B induced radical addition of thiols to acetylenes". Chemistry Letters (8): 1647. doi:10.1246/cl.1987.1647. 
  9. ^ Yadav, J. S.; Reddy, B. V. Subba; Raju, A.; Ravindar, K.; Baishya, Gakul (2007). "Hydrothiolation of Unactivated Alkynes Catalyzed by Indium(III) Bromide". Chemistry Letters 36 (12): 1474. doi:10.1246/cl.2007.1474. 
  10. ^ Benati, Luisa; Capella, Laura; Montevecchi, Pier Carlo; Spagnolo, Piero (1995). "Free-Radical Addition of Heteroarenethiols and Heteroarylmethanethiols to Hexyne and Phenylacetylene. Chemical Behavior of the Transient .beta.-Sulfanylvinyl Radicals". The Journal of Organic Chemistry 60 (24): 7941. doi:10.1021/jo00129a039. 
  11. ^ Field, Leslie D.; Messerle, Barbara A.; Vuong, Khuong Q.; Turner, Peter (2009). "Rhodium(I) and iridium(I) complexes containing bidentate phosphine-imidazolyl donor ligands as catalysts for the hydroamination and hydrothiolation of alkynes". Dalton Transactions (18): 3599–614. doi:10.1039/b821188d. PMID 19381423. 
  12. ^ Weiss, Charles J.; Wobser, Stephen D.; Marks, Tobin J. (2009). "Organoactinide-Mediated Hydrothiolation of Terminal Alkynes with Aliphatic, Aromatic, and Benzylic Thiols". Journal of the American Chemical Society 131 (6): 2062–3. doi:10.1021/ja808764q. PMID 19170549. 
  13. ^ Yang, Jun; Sabarre, Anthony; Fraser, Lauren R.; Patrick, Brian O.; Love, Jennifer A. (2009). "Synthesis of 1,1-Disubstituted Alkyl Vinyl Sulfides via Rhodium-Catalyzed Alkyne Hydrothiolation: Scope and Limitations". The Journal of Organic Chemistry 74 (1): 182–7. doi:10.1021/jo801644s. PMID 19053611. 
  14. ^ Sabarre, Anthony; Love, Jennifer (2008). "Synthesis of 1,1-Disubstituted Olefins via Catalytic Alkyne Hydrothiolation/Kumada Cross-Coupling". Organic Letters 10 (18): 3941–4. doi:10.1021/ol8012843. PMID 18702501. 
  15. ^ Cao, Changsheng; Fraser, Lauren R.; Love, Jennifer A. (2005). "Rhodium-Catalyzed Alkyne Hydrothiolation with Aromatic and Aliphatic Thiols". Journal of the American Chemical Society 127 (50): 17614–5. doi:10.1021/ja055096h. PMID 16351085. 
  16. ^ Kondoh, Azusa; Takami, Kazuaki; Yorimitsu, Hideki; Oshima, Koichiro (2005). "Stereoselective Hydrothiolation of Alkynes Catalyzed by Cesium Base: Facile Access to (Z)-1-Alkenyl Sulfides". The Journal of Organic Chemistry 70 (16): 6468–73. doi:10.1021/jo050931z. PMID 16050711. 
  17. ^ Corma, Avelino; González-Arellano, Camino; Iglesias, Marta; Sánchez, Félix (2010). "Efficient synthesis of vinyl and alkyl sulfides via hydrothiolation of alkynes and electron-deficient olefins using soluble and heterogenized gold complexes catalysts". Applied Catalysis A: General 375: 49. doi:10.1016/j.apcata.2009.12.016. 
  18. ^ Benati, Luisa; Montevecchi, Pier Carlo; Spagnolo, Piero (1991). "Free-radical reactions of benzenethiol and diphenyl disulphide with alkynes. Chemical reactivity of intermediate 2-(phenylthio)vinyl radicals". Journal of the Chemical Society, Perkin Transactions 1 (9): 2103. doi:10.1039/P19910002103. 
  19. ^ Sato, Akinori; Yorimitsu, Hideki; Oshima, Koichiro (2010). "Radical Additions of Arenethiols to Ynamides for the Selective Synthesis of N-[(Z)-2-(Arylsulfanyl)-1-alkenyl]amides". Bulletin of the Korean Chemical Society 31 (3): 570. doi:10.5012/bkcs.2010.31.03.570. 
  20. ^ Ohashi, Toyoshi; Kobayashi, Eiichi; Jinbo, Tomoko; Furukawa, Junji (1997). "The crystal structure of 1,4-benzenedithiol by rietveld analysis and studies on the mechanism of solid-state addition polymerization of 1,4-benzenedithiol to 1,4-diethynylbenzene". Journal of Polymer Science Part A: Polymer Chemistry 35 (9): 1621. doi:10.1002/(SICI)1099-0518(19970715)35:9<1621::AID-POLA3>3.0.CO;2-U. 
  21. ^ Kobayashi, Eiichi; Yoshino, Toshizumi; Aoshima, Sadahito; Furukawa, Junji (1995). "Addition polymerization of 2-cyano-1, 4-benzenedithiol to 1,4-diethynylbenzene and properties of polymers". Journal of Polymer Science Part A: Polymer Chemistry 33 (14): 2403. doi:10.1002/pola.1995.080331413. 
  22. ^ Konkolewicz, Dominik; Gray-Weale, Angus; Perrier, SéBastien (2009). "Hyperbranched Polymers by Thiol−Yne Chemistry: From Small Molecules to Functional Polymers". Journal of the American Chemical Society 131 (50): 18075–7. doi:10.1021/ja908206a. PMID 19947636. 
  23. ^ a b Chen, Gaojian; Kumar, Jatin; Gregory, Andrew; Stenzel, Martina H. (2009). "Efficient synthesis of dendrimers via a thiol–yne and esterification process and their potential application in the delivery of platinum anti-cancer drugs". Chemical Communications (41): 6291–3. doi:10.1039/b910340f. PMID 19826698. 
  24. ^ Semsarilar, Mona; Ladmiral, Vincent; Perrier, SéBastien (2010). "Highly Branched and Hyperbranched Glycopolymers via Reversible Addition−Fragmentation Chain Transfer Polymerization and Click Chemistry". Macromolecules 43 (3): 1438. doi:10.1021/ma902587r. 
  25. ^ Yu, Bing; Chan, Justin W.; Hoyle, Charles E.; Lowe, Andrew B. (2009). "Sequential thiol-ene/thiol-ene and thiol-ene/thiol-yne reactions as a route to well-defined mono and bis end-functionalized poly(N-isopropylacrylamide)". Journal of Polymer Science Part A: Polymer Chemistry 47 (14): 3544. doi:10.1002/pola.23436. 
  26. ^ Thiol–yne ‘click’ chemistry as a route to functional lipid mimetics Sandeep S. Naik, Justin W. Chan, Christopher Comer, Charles E. Hoyle and Daniel A. Savin Polym. Chem., 2011, doi:10.1039/C0PY00231C
  27. ^ Luminescent Hyperbranched Polymers: Combining Thiol-Yne Chemistry with Gold-Mediated C−H Bond Activation Dominik Konkolewicz, Sylvain Gaillard, Andrew G. West, Yuen Yap Cheng, Angus Gray-Weale, Timothy W. Schmidt, Steven P. Nolan, and Sbastien Perrier Organometallics, Article ASAP doi:10.1021/om200103f
  28. ^ Stimuli-responsive star polymers through thiol–yne core functionalization/crosslinking of block copolymer micelles doi:10.1039/C1PY00002K
  29. ^ Hensarling, Ryan M.; Doughty, Vanessa A.; Chan, Justin W.; Patton, Derek L. (2009). ""Clicking" Polymer Brushes with Thiol-yne Chemistry: Indoors and Out". Journal of the American Chemical Society 131 (41): 14673–5. doi:10.1021/ja9071157. PMID 19778016. 
  30. ^ Hyperbranched alternating block copolymers using thiol–yne chemistry: materials with tuneable properties Dominik Konkolewicz, Cheuk Ka Poon, Angus Gray-Weale and Sébastien Perrier Chem. Commun., 2010
  31. ^ Synthesis of Sulfuric Macrocycles and a Rotaxane through Thiol-yne Click and Dithiol Coupling Reactions Weidong Zhou, Haiyan Zheng, Yongjun Li, Huibiao Liu and Yuliang Li 2010 Org. Lett. doi:10.1021/ol1014569